The Conduct System and Its Influence on Student Learning

by
Matthew T. Stimpson and Steven M. Janosik

Abstract

In this study, seven items were used to define a composite variable that measures the perceived effectiveness of student conduct systems. Multivariate Analysis of Variance (MANOVA) was used to test the relationship between perceived level of system effectiveness and self-reported student learning. In the analyses, 49% of the variance in reported learning outcomes was explained by the composite variable. Simply stated, how a conduct system is administered has a dramatic influence on how much is learned by students who interact with that system.

When conduct officers view the concepts of due process and fundamental fairness as system efficacy, they are more apt to generate the type of intentional practice advanced by Lancaster (2006). Intentional practice requires student conduct professionals to engage in processes that are timely, fair, explanatory, respectful, and facilitative; and that foster student learning.

The environment in which individuals operate is an important component and driver of behavior. Additionally, environmental factors influence learning (Austin, 1993). Consequently, educators should construct learning environments that facilitate learning. In this paper, we apply these concepts to student conduct administration by first establishing what the student conduct system learning environment should include, empirically linking student perceptions of the conduct system learning environment with student learning, and discussing the implications the findings have on the practice of student conduct administration and assessment in general.

When discussing student conduct system learning environments, we are referring specifically to all processes leading up to and concluding with the application of sanctions in the conduct hearing. While a substantial amount of learning occurs as a result of the educational sanctions assigned to students as post-hearing activities, we treat the learning that occurs as a result of a student’s interaction with a student conduct system and the learning that occurs as a result of student conduct sanctions as distinct from one another.

1 This work is currently under review for publication. The authors reserve all rights to the content of this paper. Copyright ©2011.

2 Matt Stimpson is director of research at Performa Higher Education

3 Steve Janosik is associate professor of higher education at Virginia Tech.
The Conduct System Environment

A robust body of case law and literature exists on the topic of student conduct system processes. Beginning with Dixon v. Alabama Board of Education (1961), several cases have established the minimum due process standards for student conduct systems. Citing the 14th Amendment of the U.S. Constitution, courts have established that at minimum administrators must provide to charged students notice of the charges, a summary of the evidence, an opportunity to respond, that findings of responsibility are rooted in evidence, and notification of the outcome of the hearing (Lowery, 2006). These processes have been described as forming a “framework for student conduct” (Lowery, 2006, p. 22).

While administrators working at public institutions are legally bound to provide students basic elements of fundamental fairness, administrators working at private institutions are not constitutionally bound to provide the same due process protections. However, many of the same due process rights have been incorporated into the conduct systems at private institutions. For instance, Pavela’s model code of student conduct awards the same level of process to students, regardless of institution type (Pavela, 2006). Indeed, Dannells (1997) suggests that basic due process protection in student conduct systems has become so common that due process rights have transgressed institution type and become a common element of discipline in student conduct systems, regardless of institutional control.

These student conduct procedures not only form the “framework for student conduct” (Lowery, 2006, p. 22), but they also frame the learning environment. On the one hand, notification of charge, explanation of process, giving a student an opportunity to be heard, and providing a fundamentally fair process are the basic tenants of the process that is due a student at a public institution of higher education. On the other hand, these very same procedures make up the very components of the learning environments in which accused students find themselves. How students perceive this environment may influence the learning that occurs, and if so, establishes the basic measures of due process and fundamental fairness as a best practice from an educational standpoint, as well as a legal standpoint.

Given this background, the purpose of this paper is to investigate the influence of student perceptions of fundamental fairness on students’ self-reported learning because of their interaction with a student conduct system. We conclude with recommendations for student conduct administrators, as well as discuss broader implications for assessment in general.

Methods

Instrumentation

We used data collected with the Student Conduct Adjudication Processes Questionnaire (SCAPQ) (Janosik & Stimpson, 2007), an instrument designed to measure the efficacy of student conduct systems, reported learning that occurs as a result of students interacting with those systems, and student perceptions of their respective institutional culture. During the SCAPQ’s development, a panel of experts in the field determined the instrument’s face validity. The
The instrument also has high reliability. During the pilot test phase, the overall reliability for the 29-item instrument measured .94, using the Chronbach Alpha. The reliability coefficient for each subscale was also high (system efficacy = .89, student learning = .95, and environmental press = .87).

The SCAPQ is administered through the NASCAP Project, a national project aimed at assessing the learning outcomes of student conduct systems. The data for this study were collected during the academic years 2007-2008 through 2009-2010. A total of 3,944 students responded to the questionnaire, representing 23 different institutions.

Procedures

To begin the process of examining the relationship between student conduct system efficacy and student learning, we subjected the 21 items on the SCAPQ that deal with system efficacy and student learning to an Exploratory Factor Analysis (EFA). Using a varimax rotation and retaining only those factors with eigenvalues greater than one, the EFA indicated the presence of three factors. Next, we determined that an item loaded on a factor when its factor loading was greater than .6 (Pedhazur & Schmelkin, 1991). Through this process one of the 21 items was excluded. The excluded item asked students to indicate the degree to which their hearing helped them understand the institution’s perspective related to their behavior.

After removing the one item, we were left with 20 items loading on three factors. The first factor retained eight items. Each of these items was from the learning outcomes portion of the SCAPQ, and include items such as “I understand why administrators are concerned about my behavior”, “I understand how my misconduct affects others”, and “I realize I have responsibility to the community”. We labeled this factor “Learning Related to Increased Understanding.” The second factor retained all seven items on the SCAPQ that focus on system efficacy, and as such, we named this factor “System Efficacy.” Items loading on this factor included statements such as “I was treated respectfully during my hearing” and “I was given a chance to tell my side of the story.” The final factor retained the remaining five items; like the items in the first factor, this factor focused on student learning, as well. Examples of items that loaded on this factor included “I better understand the negative physical outcomes related to my misconduct” and “I better understand the academic consequences of my misconduct.” We labeled this third and final factor, “Learning Related to Consequences.” Following the EFA, we summed the respective items on each factor to produce a composite score representing each of the factors. Cronbach’s Alpha for the three factors was .94, .90, and .91, respectively.

Multivariate Analysis of Variance (MANOVA) was chosen as the most appropriate method to test the relationship between perceived level of fundamental fairness and self-reported student learning because we treated both factors that focused on student learning as dependent variables. The factor composite variable measuring system efficacy was used as a covariate in the MANOVA, and nine additional variables served as fixed factors.

These nine variables were added because they commonly appear in the student conduct literature and added to the robustness of the study. They included ethnicity (African-American,
American Indian, Asian, Caucasian, Hispanic, and Multi-racial), family income (less than $25,000; $25,000 - $50,000; $50,000 - $75,000; $75,000 – $100,000; $100,000 - $125,000; $125,000 - $150,000; and more than $150,000), first generation college student status, financial aid status, scholarship status, gender, GPA range (less than 1.00, 1.01 – 2.00, 2.01 – 2.50, 2.51 – 3.00, 3.01 – 3.50, and 3.51 – 4.00), residential status, and year in school (freshman, sophomore, junior, and senior).

Results

Overall, the system efficacy composite variable and the nine factors explained 49% of the variance in reported learning outcomes \(F(26) = 53.93, p = .00 \) and 40.4% of the variance in reported student learning \(F(26) = 36.65, p = .00 \). Table 1 presents the results of the tests of individual effects. Ethnicity, gender, residential status, system efficacy, and year in school were all statistically significant.

While the MANOVA indicated there was significant variability in reported student learning based on ethnicity, gender, residential status, and year in school, examining the partitioned variance revealed very little variability was explained by these variables. The vast majority (47.2% of the 49% in reported learning outcomes and 35.5% of 40.4% in the student learning) of variability in the two factors scores was accounted for by a student’s perceptions of system efficacy.

Discussion

With respect to the individual effects, ethnicity, gender, residential status, and year in school accounted for 2.8% of the variance in student learning and were all statistically significant. Other research has identified these variables as playing a role in student conduct. Caucasians, men, those who live on-campus (particularly in large residence halls), and students who were in their first and second years of college are typically over-represented in student conduct systems (Janosik, Spencer, & Davis, 1985; Janosik, Dunn, & Spencer, 1986). These variables were significant in this study as well, but they did not play a major role.

In this study, seven items on the SCAPQ that measured the student’s perception of fundamental fairness in the system to which the student was referred defined the conduct hearing environment. Among other things, students evaluated the timeliness of the system, if they felt informed, if they were treated with respect and fairly, and if the outcomes for their misconduct seemed consistent. This composite variable, referred to as System Efficacy, accounted for 47.2% of student learning in the conduct hearing. These findings have tremendous implications for student conduct officers. Simply stated, how a conduct system is administered has a dramatic influence on how much is learned by students who interact with that system.
Table 1
Individual Effects

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pillais Trace</th>
<th>F</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity *</td>
<td>.015</td>
<td>2.172</td>
<td>2816.00</td>
<td>.017</td>
</tr>
<tr>
<td>Family Income</td>
<td>.012</td>
<td>1.426</td>
<td>2816.00</td>
<td>.146</td>
</tr>
<tr>
<td>First Generation College Student</td>
<td>.003</td>
<td>2.116</td>
<td>1407.00</td>
<td>.121</td>
</tr>
<tr>
<td>Gender *</td>
<td>.007</td>
<td>2.431</td>
<td>2816.00</td>
<td>.046</td>
</tr>
<tr>
<td>GPA Range</td>
<td>.012</td>
<td>1.762</td>
<td>2816.00</td>
<td>.062</td>
</tr>
<tr>
<td>Recipient of Financial Aid</td>
<td>.003</td>
<td>1.793</td>
<td>1407.00</td>
<td>.167</td>
</tr>
<tr>
<td>Recipient of a Scholarship</td>
<td>.000</td>
<td>.291</td>
<td>1407.00</td>
<td>.748</td>
</tr>
<tr>
<td>Residential Status *</td>
<td>.006</td>
<td>.428</td>
<td>1407.00</td>
<td>.014</td>
</tr>
<tr>
<td>System Efficacy Composite Variable ***</td>
<td>.481</td>
<td>650.820</td>
<td>1407.00</td>
<td>.000</td>
</tr>
<tr>
<td>Year in School **</td>
<td>.013</td>
<td>3.113</td>
<td>2816.00</td>
<td>.005</td>
</tr>
</tbody>
</table>

* p < .05, ** p < .01, *** p < .001

Student conduct administrators should give considerable attention to how students perceive processes and procedures. While the elements we define in this paper as System Efficacy have been hallmarks of student conduct processes since the mid-1960s, the underlying implications of this study call for moving beyond viewing due process and fundamental fairness solely as a static, legal concept. Alternatively, we suggest that administrators think of System Efficacy contextually as an important precursor to learning.

By conceptualizing due process and fundamental fairness as System Efficacy, student conduct administrators examine if the system is producing the desired effect, not just if these procedures are provided. This shift in emphasis allows administrators to view aspects of fundamental fairness in a different manner. Under the System Efficacy framework, administrators do not ask if they provided students notice of the charge; administrators evaluate if students understood the charges. Such a shift does not require more process nor do we advocate a return to the excessive proceduralism witnessed in the 1980s (Bickel & Lake, 1999).

When conduct officers view the concepts of due process and fundamental fairness as System Efficacy, however, they are more apt to generate the type of intentional practice advanced by Lancaster (2006). In an intentional practice, ensuring that court mandated requirements are met is insufficient. Intentional practice requires student conduct professionals to engage in processes that are timely, fair, explanatory, respectful, facilitative, and that foster student learning.

During the past several years, much has been written assessing student learning and the development of appropriate learning outcomes in the higher education setting, and there are
instructive findings in this study related to broad issues of assessing student learning. College administrators have been encouraged to gather evidence about how well students in various programs are achieving defined learning goals (AAC&U/CHEA, 2008). John Schuh suggests that progress is being made across several important areas in student affairs (Student Affairs Leader, November 15, 2008). The findings presented in this study suggest that assessing the environment in which this learning takes place may be as important as measuring the learning itself.
References

Dixon v. Alabama Board of Education, 294 F.2d 150 (5th Cir. 1961).

